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1. Introduction 

 

This paper is a continuous work research in order to development of mathematical concepts 

that describes the function of Smarandache.  

 On ℕ∗, in (Dosescu, 2021), the equivalence relation ~ was defined, as follows: ∀x,y∈ℕ∗, 

x~y⟺S(x)=S(y), where S is the function of Smarandache (Coman, 2013), (Sandor, 2001), (Sandor, 

2003), (Smarandache, 1999). 

            Because S(𝑛!) = 𝑛, the equivalence class of n∈ℕ∗, denoted by [n] or 𝑛̂, where 𝑛̂ =

{𝑥 ∈ ℕ∗|𝑥~𝑛!}, i.e. 𝑛̂ = {𝑥 ∈ ℕ∗|𝐒(𝑥) = 𝑛}=S−(𝑛). It is found, based on Theorem 2 in (Dosescu, 

2021), that S−(𝑛) = 𝑛̂ and n≠1, if and only if n is a prime number. Also, we can write S−(𝑛) = 𝑛!̂, 

for any n∈ℕ∗. Moreover, n∉S−(𝑛) = 𝑛̂, if and only if n is a compound. For example, 6∉S−(6), but 

6!∈ S−(6) = 6!̂. In other words, 6 is not representative of class 6̂, while 6! is a class representative. 

mailto:tdosescu@yahoo.com
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 Let the surjective function f:ℕ∗ → ℕ∗. Then, since the set {𝑥 ∈ ℕ∗|𝑓(𝑥) = 𝑛} is non empty 

for any n∈ℕ∗ , the canonical surjection 𝑓
−

 makes sense, where:  

𝑓
−

: ℕ∗ → 𝒫(ℕ∗), 𝑓
−

(𝑛) = {𝑥 ∈ ℕ∗|𝑓(𝑥) = 𝑛}. 

 Let the equivalence relation is defined on ℕ∗, denoted by ~, as follows:  

∀a,b∈ℕ∗, a~b⟺f(𝑎) = 𝑓(𝑏). 

 Then the quotient set ℕ∗ ~⁄  is made up of the equivalence classes of ℕ∗ in relation to the 

equivalence relation ~. Each equivalence class is determined according to the preimage of a 

number n by the application 𝑓
−

, being denoted by 𝑛̂. So 𝑛̂ = {𝑥 ∈ ℕ∗|𝑓(𝑥) = 𝑛}. In general, n∉𝑛̂, 

i.e. the representative of an equivalence class depends on the choice of the function f. 

 As in any quotient set the equivalence classes form a partition of ℕ∗  or ℕ∗ = ⋃ 𝑛̂𝑛∈ℕ∗ . 

 An example of a surjective function defined on ℕ∗ is the function S. 

 If there is, the fixed points of the function f  have the following properties, which are easy 

to justify: i) If a∈ℕ∗ is a fixed point of f, then a is a representative of the class 𝑎̂; ii) If a,b∈ℕ∗ are 

distinct fixed points of f, then 𝑎̂ ≠ 𝑏̂; iii) Each equivalence class may contain at most one fixed 

point. 

 

2. Numerical function θ 

 

 A function that has the domain and codomain included in ℕ∗ is a numerical function 

(Cucurezeanu, 1976). Such a numerical function is further introduced. 

 For n∈ℕ∗ − {1} denote by θ(𝑛) = max{𝑝 ∈ Prim|𝑝 ≤ 𝑛}. If n is prime, θ(𝑛)=n, that is, n is 

a fixed point. If n is a compound number, θ(𝑛) is the largest prime number less than n. In this way 

the numerical function  has been defined θ:ℕ∗ − {1} → Prim, which is a surjective function, having 

Prim the set of prime numbers. Of θ is attached the inverse image θ−, where θ−: 𝒫(Prim) →

𝒫(ℕ∗ − {1}), and the canonical surjection makes sense: θ−: Prim → 𝒫(ℕ∗ − {1}), where θ−(𝑝) =

{𝑥|θ(𝑥) = 𝑝} is the preimage of p, for any p∈Prim. 

 Observation. The function θ is the restriction to ℕ∗ − {1} of the function MΠ:[0,∞) → Prim, 

where Π: (0, ∞) → 𝒫(Prim), Π(𝑥) is the set of smaller prime numbers or equal to x>0, and MΠ(𝑥) =

maxΠ(𝑥) (Coman, 2013). Also, the function is known π:(0, ∞) → ℕ, π(𝑥) = cardΠ(𝑥), with the 

property: lim
𝑥→∞

𝜋(𝑥)

𝑥 𝑙𝑛𝑥⁄
= 1 . Then the approximation makes sense: π(𝑥) ≈

𝑥

ln𝑥
, 𝑥 ∈ (1, ∞). The 

approximation error tends to zero, when x tends to ∞. 

 θ−(𝑝) is the set of natural numbers between the prime number p, including p, and the 

smallest prime number strictly greater than p. For example, θ(11) = 11 and θ−(7) = {7,8,9,10}, 

i.e. θ−(7) is the set of natural numbers between 7, including 7, and 11. 

 The following properties  can be check: 

p1) For n∈ℕ∗ − {1} , 2≤θ(𝑛) ≤ 𝑛; 
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p2) For a,b ∈ℕ∗ − {1}, θ(𝑎 ∙ 𝑏) ≠ θ(𝑎) ∙ θ(𝑏); 

p3) For p,q ∈Prim, θ(𝑝 ∙ 𝑞)<θ(𝑝)∙θ(𝑞); 

p4) There are compound numbers a and b such that θ(𝑎 ∙ 𝑏) > θ(𝑎) ∙ θ(𝑏). For example:  

θ(4 ∙ 10) = 37>21=θ(4) ∙ θ(10). 

p5) For n∈ℕ∗ − {1} , ɸ(θ(𝑛)) = θ(𝑛) − 1, where ɸ is Euler's function. 

 Lemma 1.  

For any a∈ℕ∗ − {1} there exists θ́(𝑎) = maxθ−(θ(𝑎)) + 1 ∈ Prim and we have θ(𝑎) ≤ 𝑎 <

θ́(𝑎), θ [ɸ (θ́(𝑎))] = θ(𝑎), 𝑎 < θ́(𝑎) < 2𝑎 according to Bertrand − Chebyshev′s theorem  

(Coman, 2013). 

 Based on lemma 1, there is the numerical function: 

θ́: ℕ
∗

− {1} → Prim, θ́(𝑎) = maxθ−(θ(𝑎)) + 1. 

For the number a∈ℕ∗ − {1}, θ́(𝑎) = min{𝑥 ∈ Prim|𝑥 > 𝑎}, that is θ́(𝑎) is the smallest prime number 

strictly greater than a. If a∈Prim, θ́(𝑎) is the first prime number, successor of a. For example, for 

a=8 we have: θ(𝑎) = 7 < 𝑎 = 8 < θ́(8) =maxθ−(θ(8)) + 1 = 10 + 1 = 11.  

Let the prime numbers p < q. If q=min{𝑥 ∈ Prim|𝑥 ≥ 𝑝}, in this case, p and q are successive 

and we will denote by l(𝑝, 𝑞) the number of compound numbers what lie between p and q, i.e.: 

l(𝑝, 𝑞) = cardθ−(𝑝) − 1, 

where cardθ−(𝑝)=p-q. 

 Returning to application 3 of (Dosescu, 2021) we have:  

θ(𝑎) = 100895598163, where a=100895598169 (Câmpan, 1978),  

θ−(100895598163)={10089598163,100895598164,100895598165, … ,100895598186} and 

l(100895598163,100895598187) = cardθ−(100895598163) − 1 = 24-1=23. 

 Since Prim and ℕ∗ − {1} are subsets of ℕ∗, the results of paragraph 1 can be applied. Thus, 

let the equivalence relation defined on ℕ∗ − {1}, denoted by ~, as follows:  

∀a,b∈ℕ∗ − {1}, a~b⟺θ(𝑎) = θ(𝑏). 

 Then the quotient set ℕ∗ − {1} ~⁄  is made up of the equivalence classes of ℕ∗ − {1} in 

relation to the equivalence relation ~. Since the fixed points of the function θ are prime numbers, 

each equivalence class is determined according to the preimage of a prime number p by the 

application θ−, being denoted by 𝑝̂. 

 Then 𝑝̂ = θ−(𝑝) = {𝑥 ∈ ℕ∗ − {1}|θ(𝑥) = 𝑝}. At the same time, p is a representative of the 

class 𝑝̂, because p∈𝑝̂, hence Prim is a system of representatives of the equivalence classes. Another 

system of equivalence class representatives is {𝑝 + 1|𝑝 ∈ Prim − {2}} ⋃{2}, because p+1∈𝑝̂ and 

θ(𝑝 + 1) = 𝑝. For example, 7̂ = {7,8,9,10}, because θ(7)= θ(8) = θ(9) = θ(10) = 7. 

Furthermore l(7,11) = 3 = card7̂ − 1. 

In general, l(𝑝, 𝑞) = card𝑝̂ − 1, if p and q are successive prime numbers, p<q. 
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Based on the above, you can write: ℕ∗ − {1} = ⋃ 𝑝̂𝑝∈Prim . 

A characterization of elements in the same equivalence class is: 

p6) a∈𝑝̂, p prime, if and only if θ́(𝑎) = θ́(𝑝). 

It is observed that (Prim, ≤) is totally ordered and 2 is the first element. 

 

3. Algorithm for determining of 𝐒− 

 

Based on the results from (Dosescu, 2021), the algorithm for determining the preimage 

S−(𝑛), n∈ℕ∗, comprises the following steps: I. Determine the canonical decomposition of n!; II. 

Determine the canonical decomposition of n; III. It determines the maximal factors of n!, and if n 

is a compound it also determines the quasi-maximal factors corresponding to the maximal factors; 

IV. Determine a∈ S−(𝑛) as follows: 

- if n is prime, then, using the notations in proposition 4 of (Dosescu, 2021), a=n∙q, where q 

= 1 or q=2∝ with 1≤∝≤ 𝑔(𝑛, 2) or q=3β with 1≤β≤𝑔(𝑛, 3) or q=2∝ ∙ 3β with 1≤∝≤ 𝑔(𝑛, 2) and 

1≤β≤𝑔(𝑛, 3) or … or q=2∝ ∙ 3β ∙ … ∙ 𝑝ω with 1≤∝≤ 𝑔(𝑛, 2), 1≤β≤𝑔(𝑛, 3) , … and 1≤ω≤𝑔(𝑛, 𝑝), 

p=θ(𝑛); 

- if n is compound, then, using the notations in proposition 4 of (Dosescu, 2021) and taking 

into account F, the set of maximal factors together with the corresponding quasi-maximal factors, 

a=f∙q, where: 

- f is a maximum factor, a quasi-maximum factor, a finite product of distinct maximum or 

quasi-maximum factors and not having the same base, all of F; 

- q is 1 or a product of different factors, from the canonical decomposition of n!, which are 

neither maximal nor quasi-maximal.  

  Observation. F=⋃ {𝑝
𝑖
𝑔(𝑛,𝑝𝑖)−𝑘𝑖+1, … , 𝑝

𝑖
𝑔(𝑛,𝑝𝑖)}𝑚

𝑖=1 , where 𝑘𝑖 corresponds to 𝑝
𝑖
 as in proposition 

4c) of (Dosescu, 2021). 

 

4. Algorithm for determining of card𝐒−(𝒏) 

 

Let n∈ℕ∗ and 𝑛! = 𝑞1
𝛽1 ∙ 𝑞2

𝛽2 ∙ … ∙ 𝑞𝑟
𝛽𝑟, the canonical decomposition of n!, where r is the 

number of factors in the canonical decomposition of n!. Obviously 𝑞1 = 2, 𝑞2 = 3, …, and: 

- if n is prime, then 𝑞𝑟 = 𝑛 and β𝑟 = 1;  

- if n is compound, then 𝑞𝑟 = θ(𝑛) and β𝑟 = 1. 

For n prime we consider F = {n} and for n compound we consider F as in the above 

observation. Let G be the set of factors in the canonical decomposition of n!. 

For f∈F and 𝑎1
𝑖1 , … , 𝑎𝑘

𝑖𝑘 ∈ G the notation f∗𝑎1
𝑖1 ∗ … ∗ 𝑎𝑘

𝑖𝑘 is used for the set of elements in 

S−(𝑛) which are the product of k+1 factors f∙𝑎1
𝑙1 ∙ … ∙ 𝑎𝑘

𝑙𝑘, k=1, 𝑟 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , and each 𝑙𝑗 takes all the 
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values from 1 to 𝑖𝑗, 𝑗 = 1, 𝑘̅̅ ̅̅̅. It is found that the number of those elements is equal to the product 

𝑖1 ∙ … ∙ 𝑖𝑘, i.e.:card(𝑓 ∗ 𝑎1
𝑖1 ∗ … ∗ 𝑎𝑘

𝑖𝑘) = 𝑖1 ∙ … ∙ 𝑖𝑘. 

Caution. If cardF> 1 those factors can be avoided, which have already been taken into 

account, so that there are no elements common to several sets. 

With this precaution it can be written: 

cardS−(𝑛) = cardF + ∑ ∑ card(𝑓 ∗ 𝑎1
𝑖1 ∗ … ∗ 𝑎𝑘

𝑖𝑘)𝑓∈F
𝑟−1
𝑘=1 . 

The algorithm for determining cardS−(𝑛), n∈ℕ∗, comprises the following steps: 

I. Determine the canonical decomposition of n!; 

II. Determine G and r=cardG; 

III. Determine F and cardF, using where n is composed step III of the calculation algorithm 

for S−(𝑛); 

IV. For each k, k=1, 𝑟 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and each f∈F, taking into account the mentioned precaution, it is 

determined card(𝑓 ∗ 𝑎1
𝑖1 ∗ … ∗ 𝑎𝑘

𝑖𝑘), where 𝑎1
𝑖1 , … , 𝑎𝑘

𝑖𝑘 ∈ G. 

V. Calculate cardS−(𝑛) = cardF + ∑ ∑ card(𝑓 ∗ 𝑎1
𝑖1 ∗ … ∗ 𝑎𝑘

𝑖𝑘)𝑓∈F
𝑟−1
𝑘=1 . 

5. Aplication 

Using the above algorithms, determine: card S−(12) and indicate 10 elements of S−(12). 

 Solution. 

Applying the above algorithm we obtain: 

I. 12!=210 ∙ 35 ∙ 52 ∙ 7 ∙ 11; II. G={210, 35, 52, 7,11} and r=5; III. F={210, 29, 35} and 

cardF=3; IV. For k = 1 and 

- f=210 the sum has C4
1 = 4  terms, namely: 

cardf∗35= 5, cardf∗52 = 2, cardf∗7=1, cardf∗11=1; 

- f=29 the sum has C4
1 = 4  terms, namely:  

cardf∗35 = 5, cardf∗52= 2, cardf∗7= 1, cardf∗11=1; 

- f=35 the sum has C4
1 = 4  terms, namely:  

cardf∗28=8 (instead of the factors 210 and 29, which were previously considered, must  28 

because the terms 210 ∙ 35 and 29 ∙ 35 are already considered in 210∗35 and 29 ∗ 35, respectively), 

cardf∗52= 2, cardf∗7= 1, cardf∗11=1. 
For k = 2 and 

- f=210 the sum has C4
2 = 6  terms, namely: 

cardf∗35 ∗ 52 = 10, cardf∗35 ∗ 7 = 5, cardf∗ 35 ∗ 11 = 5, cardf∗52 ∗ 7 = 2,  cardf∗52 ∗

11 = 2, card𝑓 ∗ 7 ∗ 11 = 1;  

- f=29 the sum has C4
2 = 6  terms, namely: 
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cardf∗35 ∗ 52 = 10, cardf∗35 ∗ 7 = 5, cardf∗ 35 ∗ 11 = 5, cardf∗52 ∗ 7 = 2,  cardf∗52 ∗

11 = 2, card𝑓 ∗ 7 ∗ 11 = 1; 

- f=35 the sum has C4
2 = 6  terms, namely: 

cardf∗28 ∗ 52 = 16, car df∗28 ∗ 7 = 8, cardf∗28 ∗ 11 = 8 (instead of the factors 210 and 29, 

which were previously considered, 28 must be used, in order to avoid terms common to the 

other sets), cardf∗52 ∗ 7 = 2, cardf∗52 ∗ 11 = 2, cardf∗7∗11=1. 

For k = 3 and  

- f=210 the sum has C4
3 = 4  terms, namely: 

cardf∗35 ∗ 52 ∗ 7 = 10, cardf∗35 ∗ 52 ∗ 11 = 10, cardf∗35 ∗ 7 ∗ 11 = 5, cardf∗52 ∗ 7 ∗ 11 = 2; 

- f=29 the sum has C4
3 = 4  terms, namely: 

cardf∗35 ∗ 52 ∗ 7 = 10, cardf∗35 ∗ 52 ∗ 11 = 10, cardf∗35 ∗ 7 ∗ 11 = 5, cardf∗52 ∗ 7 ∗

11 = 2; 

- f=35 the sum has C4
3 = 4  terms, namely: 

cardf∗28 ∗ 52 ∗ 7 = 16, cardf∗28 ∗ 52 ∗ 11 = 16, cardf∗28 ∗ 7 ∗ 11 = 8 (instead of the 

factors 210 and 29, which were previously considered, 28 must be used, in order to avoid 

terms common to the other sets), cardf∗52 ∗ 7 ∗ 11 = 2. 
For k = 4 and  

- f=210 the sum has C4
4 = 1  terms, namely: 

cardf∗35 ∗ 52 ∗ 7 ∗ 11 = 10; 

- f=29 the sum has C4
4 = 1  terms, namely: 

cardf∗35 ∗ 52 ∗ 7 ∗ 11 = 10; 

- f=35 the sum has C4
4 = 1  terms, namely: 

cardf∗28 ∗ 52 ∗ 7 ∗ 11 = 16 (instead of the factors 210 and 29, which were previously 

considered, 28 must be used, in order to avoid terms common to the other sets). 
V. 

 CardS−(12) =3+18+12+25+25+37+27+27+42+10+10+16=3+30+87+96+36=156+96= 

252<479001600=12!. 

 Applying the calculation algorithm for determining S− we obtain: 

 I. 12!=210 ∙ 35 ∙ 52 ∙ 7 ∙ 11; II. 12=22 ∙ 3; III. Maximal factors corresponding to 12! can be: 

210 and 35. The verification is as follows: 

 - from 𝑔(12,2) = [
12

2
] + [

12

4
] + [

12

8
] + [

12

16
] = 6 + 3 + 1 = 10 and 𝑔(11,2) = [

11

2
] +

[
11

4
] + [

11

8
] + [

11

16
] = 8 it obtain A = {12,13,…}, the set of solutions of the inequality g (x, 2) ≥10, 

which implies S(210) = minA = 12 and therefore 210 is the maximal factor, in addition 210 ∈
S−(12). Since 12 is a compound number, it makes sense to determine the quasimaximal factors 

corresponding to 210. Because 𝑔(11,2) = 𝑔(12,2) − 𝑘, where k=2≥2, there is only one quasi-
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maximal factor 29. Indeed, since 𝑔(11,2) = 8 < 9 < 10 = 𝑔(12,2) the set of solutions of the 

inequality 𝑔(𝑥, 2) ≥ 9 is A={12,13, … }, of where S(29) = 12 and 29 ∈ S−(12). In addition, 29 

is also the minimum quasi-maximal factor corresponding to 210. 

- from 𝑔(12,3) = [
12

3
] + [

12

9
] + [

12

27
] = 5 and 𝑔(11,3) = [

11

3
] + [

11

9
] + [

11

27
] = 4 it obtain 

A={12,13, … }, the set of solutions of the inequality 𝑔(𝑥, 3) ≥ 5, which implies S(35) = minA =

12 and therefore 35 is the maximal factor, in addition 35 ∈ S−(12). Since 12 is a compound 

number, it makes sense to determine the quasi-maximal factors corresponding to 35. Because 

𝑔(11,3) = 𝑔(12,3) − 𝑘, where k=1<2, there is no quasi-maximal factor corresponding to 35. 

 IV. Determine the set S−(12), taking into account that 12 is a compound number, 

F={210, 29, 35} and that any element of the set is of the form f ∙ q, where f is a maximal factor, a 

quasimaximal factor, a finite product of distinct maximal or quasimaximal factors, all of F, and q 

is 1 or a product of distinct factors, from the canonical decomposition of n!, which are neither 

maximal nor quasimaximal. It follows that S−(12) also contains the following 10 terms: 

S−(12) ={210, 29, 35, … , 35 ∙ 2 ∙ 5, 35 ∙ 2 ∙ 52, 35 ∙ 22 ∙ 5, … , 35 ∙ 27 ∙ 5 ∙ 7 ∙ 11, 

35 ∙ 27 ∙ 52 ∙ 7 ∙ 11, 35 ∙ 28 ∙ 5 ∙ 7 ∙ 11, … , 210 ∙ 35 ∙ 52 ∙ 7 ∙ 11 }= 

={243, 512, 1024, ..., 2430, 4860, 12150, ..., 11975040, 23950080, 59875200, ..., 479001600}. 

  

6. Connection with cryptosystems 

 

 The algorithms in paragraphs 4 and 5 use number factoring. The issue of factoring large 

numbers is considered a difficult issue. Cryptosystems use such a problem to ensure their security 

(***), a problem that falls within the scope of cryptographic protection of financial information. 

 Next we refer to the RSA cryptosystem with public key, often used, whose algorithm 

involves the choice of two large prime numbers, p and q, with which we calculate n = p ∙ q, called 

the module. The numbers used as the module are also called RSA numbers (***). 

 We discuss the case where p and q are chosen as "approximately equal / close" large prime 

numbers. 

 In this case n = p ∙ q. Assuming fixed p, we will choose q as a function of p, so that it is as 

"close" to p as possible, using the numerical function θ. So: i) if l(𝑝, θ́(𝑝)) < 𝑙(𝑝, θ(𝑝 − 1)), it 

choose q=θ́(𝑝); ii) if l(𝑝, θ́(𝑝)) > 𝑙(𝑝, θ(𝑝 − 1)), it choose q=θ(𝑝 − 1); iii) if l(𝑝, θ́(𝑝)) =

𝑙(𝑝, θ(𝑝 − 1)), it choose q=θ́(𝑝) or q=θ(𝑝 − 1). 

In situation i), p<q=θ́(𝑝). Then S(𝑛) = θ́(𝑝), ɸ(𝑛) = (𝑝 − 1)(θ́(𝑝) − 1), where ɸ is Euler's 

function. In situation ii) p>q=θ(𝑝 − 1). Then S(𝑛) = 𝑝, ɸ(𝑛) = (𝑝 − 1)(θ(𝑝 − 1) − 1) and 

S−(𝑛) = 𝑛̂ = θ(𝑝 − 1)̂ , θ(𝑛) < 𝑛 < θ́(𝑛) and θ−(θ(𝑛)) = 𝑛̂ = θ(𝑛)̂ . For situation iii) it is 

useful to calculate θ [ɸ (n)] in situations i) and ii). 
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 In situation i) it obtain: θ[ɸ(𝑛)]i) = θ[(𝑝 − 1)(θ́(𝑝) − 1)], where(𝑝 − 1)(θ́(𝑝) − 1) =

(𝑝 − 1) ∙ maxθ−(𝑝) > 𝑝(𝑝 − 1).                                                                             (*) 

In situation ii) it obtain:θ[ɸ(𝑛)]ii) = θ[(𝑝 − 1)(θ(𝑝 − 1) − 1)], where(𝑝 − 1)(θ(𝑝 − 1) −

1) < (𝑝 − 1)θ(𝑝 − 1) < (𝑝 − 1)𝑝.                                                                          (**) 

From (*) and (**) it obtain: θ[ɸ(𝑛)]i) ≥ μ[ɸ(𝑛)]ii). 

 

Conclusion. In situation iii), in order to increase the difficulty of factorizing n, we choose 

q=θ́(𝑝). Moreover, even in situation ii) it is advisable to choose q=θ́(𝑝), in order to increase the 

difficulty of factorizing n, although “close” is sacrificed. 
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